If it's not what You are looking for type in the equation solver your own equation and let us solve it.
29.5^2+46.5^2=c^2
We move all terms to the left:
29.5^2+46.5^2-(c^2)=0
We add all the numbers together, and all the variables
-1c^2+3032.5=0
a = -1; b = 0; c = +3032.5;
Δ = b2-4ac
Δ = 02-4·(-1)·3032.5
Δ = 12130
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$c_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$c_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$c_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-\sqrt{12130}}{2*-1}=\frac{0-\sqrt{12130}}{-2} =-\frac{\sqrt{}}{-2} $$c_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+\sqrt{12130}}{2*-1}=\frac{0+\sqrt{12130}}{-2} =\frac{\sqrt{}}{-2} $
| -c+12-20=-12-2c | | 20-18j=-19-15j | | -17.84-14.3z=0.1z+16.72 | | 21.9-(x*x)=0 | | -20-16h+4h=20-8h | | 5x+7=4x=9 | | -19+10s=11s | | -19.6p+2.24=-19.8p | | 40/3x=17 | | 5x2+2=13 | | X^3+3x^2+2x=720 | | 5^(2x+1)=132 | | 10b+20=-20+6b-20 | | 5^2x+1=132 | | 2f-20=-3f+20 | | -4-14n=-13n | | 1.5=10/x-1.5-10/x | | 8x-1/3+2x+1/6+x-7/2=8+x | | -13m-7.35=10.97-14.3m | | -13m-7.35=10.97-14.3 | | 4x^2-5x+10=360 | | -13.5m-7.35=-16.56-14.3m-5.59 | | 1.43^x+3.1=8.48 | | -2p+1=-p-9 | | 6k+16=7k+3 | | 2P+1=p-9 | | 2x-5(x-3)=-4+2x-11 | | 15t-19=17+t+20t | | 6x-2=4x=14 | | 12w+13=13w | | 3u+9=45 | | 2u-14=24 |